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1  Introduction

Soil health is defined as “the continued capacity of soil to 
function as a vital living ecosystem that sustains plants, ani-
mals, and humans” (NRCS 2024) and is widely accepted 
as a key concept in promoting environmental health and 
food security (Bagnall et al. 2021; Bünemann et al. 2018). 
As a result, the design and implementation of agricultural 
systems aimed at restoring and maintaining healthy soils 
have increased in recent years (Khangura et al. 2023; Mont-
gomery and Biklé 2021; Wezel et al. 2020). Conservation 
agriculture, sometimes referred to as regenerative agricul-
ture, is one such system and is characterised by three main 
principles, namely (1) minimal or no soil disturbance, (2) 
permanent organic soil cover, and (3) crop diversification 
through crop rotation or integration of cover crops (Brown 
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Abstract
Conservation agriculture promotes soil health across different management and environmental contexts. While soil ecosys-
tem status (health and functioning) serves as a key indicator of soil health, it remains understudied, with most evidence 
coming from long-term trials that may not reflect on-farm conditions. Therefore, this study evaluated and compared the 
long-term soil ecosystem status (health and functioning) of farmer croplands practicing conservation agriculture under 
two distinct management and environmental contexts. Two sites near Vrede and Reitz (South Africa) were investigated, 
focusing on conservation agriculture systems, with conventional agriculture and grazed grassland as references systems. 
Selected ecological indicators (nematode-based indices, organic matter, permanganate-oxidizable carbon, and soil respira-
tion) and physico-chemical properties (particle size distribution, pH, electrical conductivity, and macro- and micronutri-
ents) were assessed to measure soil ecosystem status and the environmental context. At Vrede, pasture and conservation 
agriculture systems presented elevated organic matter content and microbial activity due to continuous organic cover 
and minimal physical disturbance. Furthermore, the nematode Maturity Index in these systems was higher, indicating 
more balanced and healthier soil ecosystems. In contrast, at Reitz, differences between conservation agriculture systems 
were strongly associated with soil texture differences, influencing organic matter and respiration rates. Additionally, fine-
textured soils consistently exhibited greater permanganate-oxidizable carbon values, reflecting the role of soil texture in 
carbon retention and ecosystem functioning. This study underscores the relevance of both agricultural management and 
environmental contexts, particularly soil texture, when implementing conservation agriculture systems. It highlights the 
need for tailored agricultural systems to complement on-farm options and local conditions.
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et al. 2018; Hobbs et al. 2008; Thierfelder and Mhlanga 
2022). According to Kassam et al. (2022) global annual 
increases in the adoption of conservation agriculture is 
typically greater than 10 M ha. Driving this interest from 
farmers is the reported benefits of conservation agriculture, 
including increased carbon sequestration (Kiran Kumara et 
al. 2020) and water use efficiency (Jat et al. 2020), as well 
as increased yields and profits especially under limited rain-
fall conditions (Thierfelder and Mhlanga 2022). Conserva-
tion agriculture has also been linked to increased ecosystem 
multifunctionality, including biodiversity preservation, soil 
and water quality, and climate mitigation (Wittwer et al. 
2021). However, changes in soil health status and the mani-
fested benefits or pitfalls must be monitored to inform farm-
ers and land managers of the restoration rate and whether 
intervention is required (Muñoz-Rojas 2018).

Generally, soil health assessment and monitoring frame-
works make use of selected physical, chemical, and bio-
logical indicators integrated to calculate a soil health score 
(Cherubin et al. 2016; Moebius-Clune et al. 2016a, b). 
However, in practice, soil health studies frequently lack an 
ecological perspective, meaning they do not properly focus 
on the biological component of soil health (Sprunger and 
Martin 2023). Biological measurements would often be lim-
ited to microbial biomass and soil respiration (Bünemann et 
al. 2018). But given the central role that soil biology plays, 
several authors have emphasised the need to focus on soil 
ecosystem status. Information on soil ecosystem status can 
be generated by studying nematode communities (Du Preez 
et al. 2022). Nematodes occupy an important position in the 
soil food web where they interact closely with other organ-
isms across trophic levels (Creamer et al. 2022; Li et al. 
2024; Neher 2001). They regulate microbial populations, 
assist in nutrient cycling, and contribute to the activation of 
plant defensive mechanisms and the introduction of antago-
nistic bacteria of plant pathogens (Li et al. 2024; Topalović 
and Geisen 2023). Finally, nematodes are very responsive to 
changes in the soil environment including food availability 
and chemical or physical disturbances (Bongers and Ferris 
1999; Carneiro et al. 2019; Du Preez et al. 2018; Sánchez-
Moreno et al. 2018), making them indicators of soil ecosys-
tem health and functioning over temporal and spatial scales 
(Ney et al. 2019).

However, a limited focus on ecosystem status as part of 
soil health assessments is not the only challenge in generat-
ing a sound scientific understanding of the benefits and pit-
falls of conservation agriculture. Much of the science related 
to conservation agriculture has been performed in managed 
long-term research trials, such as the Langgewens Research 
Trial (South Africa) (Labuschagne et al. 2020; Mulimbi et 
al. 2023) and the W. K. Kellogg Biological Station Long-
term Ecological Research experiment (USA) (Martin and 

Sprunger 2022; Sprunger et al. 2020). These trials are key 
to studying plant-soil interactions and ecological responses 
over multiple years, especially considering that soil eco-
system recovery takes time (Du Preez et al. 2024). Yet, in 
practice, conservation agriculture is implemented under a 
multitude of management and environmental contexts with 
varying success rates (Smith et al. 2022; Thapa et al. 2023).

Agricultural practices like composting, integration of 
livestock, judicious use of fertilizers, and agroforestry are 
often implemented in addition to the main principles of con-
servation agriculture (FAO 2013; Lal 2020; Thierfelder et 
al. 2018). Farmers’ risk tolerance and limited capital also 
affect their adoption of these practices, as does the local 
environmental context. For instance, a study by Du Preez 
et al. (2024) in South Africa noted that while conservation 
agriculture improves soil health, local sandy conditions 
restrict carbon storage, which in turn affects ecological pro-
cesses. In addition to soil characteristics, climatic factors 
also play an important role in determining the carbon stor-
age potential of soils. In semi-arid dryland conditions, lim-
ited rainfall restricts crop growth, which reduces the carbon 
inputs available for sequestration (Halvorson et al. 2002). 
With fewer carbon inputs, the soils’ capacity to accumulate 
organic carbon is inherently constrained. Moreover, pro-
longed periods of high temperatures, coupled with low soil 
moisture, further restrict microbial activity that is key for 
the breakdown and stabilisation of organic matter (Morell 
et al. 2011). A review on conservation agriculture in arid 
and semi-arid conditions revealed large ranges (28–66%) in 
soil organic carbon sequestration (Page et al. 2020). Ulti-
mately, we need to understand that substantial variability is 
associated with conservation agriculture and most impor-
tantly, that it is not a ‘one-size-fits-all’ approach (Lal 2020). 
Furthermore, there is a need for on-farm research, which 
usually involves farmer-led research trials often supported 
by a scientific team (Jackson-Smith and Veisi 2023). This 
approach offers a unique opportunity to evaluate the efficacy 
and performance of conservation agriculture under the dif-
ferent management and environmental contexts that farmers 
operate within (Snapp et al. 2019; Strauss et al. 2021).

Given the integral role of soil ecosystems in determining 
the success of conservation agriculture and the potential for 
varied responses due to different management and environ-
mental contexts, this study aimed to evaluate and compare 
the long-term soil ecosystem status of farmer croplands 
practicing conservation agriculture under two distinct man-
agement and environmental contexts. Therefore, the first 
objective was to investigate the effect of conservation agri-
culture under two distinct management contexts on selected 
ecological indicators of soil ecosystem health and function-
ing. Secondly, we evaluated the ecological responses of 
soil under conservation agriculture to the environmental 
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context, as reflected by selected soil physical and chemical 
properties. Finally, this study sought to explore the practical 
implications for farmers and inform the implementation of 
conservation agriculture.

We hypothesise that conservation agriculture systems 
promote soil ecosystem health and functioning, but its effec-
tiveness is influenced by management practices and envi-
ronmental conditions, with ecological responses linked to 
variations in soil physical and chemical properties.

2  Materials and Methods

2.1  Study Sites

The study was undertaken in the Free State Province, a 
semi-arid region within a summer rainfall area of South 
Africa (Hensley et al. 2006). Two farms represented the 
study sites and were located near the town of Vrede and 
Reitz, respectively. These farming sites are approximately 
90 km apart and situated at elevations of 1600 m (Vrede) 
and 1700 m (Reitz) above sea level. Both sites are in the 
Highveld Grassland climatic region, characterised by warm 
summers and cold, dry winters. The mean annual rainfall 
in this region ranges between 650 and 750  mm mainly 
received between October and April. The soils formed from 
the extensive weathering of Beaufort shale and mudstone-
sedimentary rocks with substantial sandy contributions 
from the Elliot, Molteno, and Clarens formations (Le Roux 
et al. 2010).

At both the Vrede and Reitz sites, three conservation agri-
culture (Cons) systems were selected within a 2 km radius. 
Additionally, for a broader management context, each site 
also included a conventional agriculture (Conv) system and 
a pasture system. The Conv system was selected as the clos-
est neighbouring cropland based on its practice of tillage, 
limited or no soil organic cover, and minimal crop diversi-
fication. The pasture system, situated adjacent to the Cons 
systems, was grassland with no physical or chemical man-
agement. It is important to note that six replicate samples 
were collected per field (system) per site. Although it can 
be argued that six separate fields should have been selected 
per system (i.e., six fields for Cons 1, Cons 2, Cons 3, Conv, 
and pasture, respectively), this was not feasible consider-
ing the potential for large environmental and management 
variations between replications, threatening the interpret-
ability of the results. For further information, please see the 
‘Sampling design’ section.

2.2  Management Contexts

2.3  Vrede

The Cons systems, originally transitioned from conventional 
agriculture in 2012, were characterised by no-tillage, cash 
crop rotation with cover crops, livestock integration, reten-
tion of soil organic cover, and reduced synthetic fertiliser 
application (Table 1). Cash crops included maize and soy-
bean, which were rotated with summer cover crops (SCCs) 
and winter cover crops (WCC). Maize synthetic fertilisation 
was 60 Kg ha− 1 nitrogen (N), 14 Kg ha− 1 phosphorus (P), 
and 7 Kg ha− 1 potassium (K) band-placed at planting for all 
the systems. Post-harvest, maize residues were selectively 
grazed by cattle. Selective grazing refers to cattle having the 
freedom to roam in a pasture and choose the most palatable 
plant species to eat. This contrasts with ultra-high density 
grazing, where livestock are confined to a small area for 
a short period, encouraging them to graze on all available 
plant species to ensure uniform utilisation of the vegetation. 
The SCC and WCC received no fertilisation and were selec-
tively grazed towards the end of the respective growing sea-
sons. On these systems grazing continued until a minimum 
of 30% soil cover remained.

The Conv system received higher amounts of inorganic 
fertilizer and was under conventional tillage (i.e., seasonal 
ploughing and seedbed preparation) and continuous soy-
bean-maize rotation. Maize synthetic fertilisation included 
115 Kg ha− 1 N, 24 Kg ha− 1 P, and 12 Kg ha− 1 K, which 
are typical fertiliser application rates for dryland maize in 
the region. Soybean was fertilised with 15 Kg ha− 1 P. Post-
harvest cash crop residues in the Conv system were grazed 
by sheep until fully utilised. Finally, the pasture system was 
grazed by cattle once per year during the summer growing 
season.

2.3.1  Reitz

The Conv systems were transitioned from conventional 
agriculture in 2009. Since then, a rotation of soybean, wheat, 
sunflower (sometimes followed by volunteer wheat), and 
maize was implemented (Table  2). Furthermore, reduced 
fertilisation, no-tillage, and organic material retention was 
implemented. While varying rates of fertiliser were applied 
on soybean, wheat and maize, sunflower synthetic fertilisa-
tion consisted of 32 Kg ha− 1 N and 22 Kg ha− 1 P. Also, the 
soybean, wheat, and maize residues were selectively grazed 
by cattle.

In turn, the Conv system primarily featured maize mono-
cropping, with the 2018/19 growing season marking the first 
instance of soybean cultivation in more than 10 years. The 
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Table 1  Management context (practices) per season associated with the studied conservation agriculture, conventional agriculture, and pasture 
systems at Vrede

Summer (2017/18) Winter (2018) Summer (2018/19) Winter (2019) Summer (2019/20)
Conservation Agriculture 1 Crop (cultivar) Maize N/A Soybean WCC** SCC*

Fertilisation
(Kg ha− 1)

60 N + 14 P + 7 K N/A N/A N/A N/A

Grazing Cattle (residues) N/A N/A Cattle Cattle
Conservation Agriculture 2 Crop (cultivar) SCC* N/A Soybean WCC** Maize

Fertilisation
(Kg ha− 1)

N/A N/A N/A N/A 60 N + 14 P + 7 K

Grazing Cattle N/A N/A Cattle Cattle (residues)
Conservation Agriculture 3 Crop (cultivar) Maize N/A Soybean WCC** SCC*

Fertilisation
(Kg ha− 1)

60 N + 14 P + 7 K N/A N/A N/A N/A

Grazing Cattle (residues) N/A N/A Cattle Cattle
Conventional Agriculture Crop (cultivar) Maize N/A Soybean N/A Maize

Fertilisation
(Kg ha− 1)

115 N + 24 P + 12 K N/A 15 P N/A 115 N + 24 P + 12 K

Grazing Cattle (residues) N/A Sheep N/A Cattle (residues)
Pasture Crop (cultivar) Grassland Grassland Grassland Grassland Grassland

Fertilisation
(Kg ha− 1)

N/A N/A N/A N/A N/A

Grazing Cattle N/A Cattle N/A Cattle
*4 Kg ha− 1 sorghum (Sorghum bicolor), 2 Kg ha− 1 pearl millet (Pennisetum glaucum), 10 Kg ha− 1 cowpea (Vigna unguiculata), 4 Kg ha− 1 doli-
chos (Lablab purpureus), 3 Kg ha− 1 sunn hemp (Crotalaria juncea), 1 Kg ha− 1 radish (Raphanus sativus), 4 Kg ha− 1 oat (Avena sativa), and 4 
Kg ha− 1 buckwheat (Fagopyrum esculentum)
**20 Kg ha− 1 oat (Avena sativa), 8 Kg ha− 1 rye (Secale cereale), 1 Kg ha− 1 radish (Raphanus sativus), 3 Kg ha− 1 vetch (Vicia sp.), and 0.5 Kg 
ha− 1 turnip (Brassica rapa)
The first sampling occurred in September 2019, preceding the 2019/20 summer growing season, while the second sampling was conducted in 
February 2020, during the ongoing growing season. Abbreviations: nitrogen (N), phosphorus (P), potassium (K), winter cover crops (WCC), 
and summer cover crops (SCC)

Table 2  Management context (practices) per season associated with the studied conservation agriculture, conventional agriculture, and pasture 
systems at Reitz

Summer (2017/18) Winter (2018) Summer 
(2018/19)

Winter (2019) Summer 
(2019/20)

Conservation 
Agriculture 1

Crop (cultivar) Soybean Wheat Sunflower Volunteer wheat Maize
Fertilisation
(Kg ha− 1)

16 N + 21 K 19 N + 28 K 32 N + 22 P N/A 31 N + 17 
P + 45 K

Grazing Cattle (residues) N/A N/A N/A Cattle (residues)
Conservation 
Agriculture 2

Crop (cultivar) Soybean Wheat Sunflower Volunteer wheat Maize
Fertilisation
(Kg ha− 1)

16 N + 32 K 24 N + 25 P + 8 K 32 N + 22 P N/A 24 N + 17 
P + 45 K

Grazing Cattle (residues) Cattle N/A N/A Cattle (residues)
Conservation 
Agriculture 3

Crop (cultivar) Soybean Wheat Sunflower Volunteer wheat Maize
Fertilisation
(Kg ha− 1)

24 N + 16 P 22 N + 22 P + 4 K 32 N + 22 P N/A 24 N + 17 P

Grazing Cattle (residues) Cattle N/A N/A Cattle (residues)
Conventional 
Agriculture

Crop (cultivar) Maize N/A Soybean N/A Maize
Fertilisation
(Kg ha− 1)

110 N + 30 P + 30 K N/A 15 P + 20 K N/A 110 N + 30 
P + 30 K

Grazing Cattle (residues) N/A Cattle (residues) N/A Cattle (residues)
Pasture Crop (cultivar) Grassland Grassland Grassland Grassland Grassland

Fertilisation
(Kg ha− 1)

N/A N/A N/A N/A N/A

Grazing Cattle (UHDG) N/A Cattle (UHDG) N/A Cattle (UHDG)
The first sampling occurred in September 2019, preceding the 2019/20 summer growing season, while the second sampling was conducted in 
February 2020, during the ongoing growing season. Abbreviations: nitrogen (N), phosphorus (P), potassium (K), and ultra-high density graz-
ing (UHDG)
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environmental contexts. Working within operational crop 
fields imposes unique challenges and limitations on experi-
mental design; thus, our methodology is tailored to balance 
scientific rigor with practical feasibility. The selection of 
multiple, discrete plots per field aims to capture the inher-
ent variability within these agricultural systems, providing a 
more nuanced understanding of soil ecosystem status under 
agricultural conditions.

2.5  Sample Analysis

2.5.1  Ecological Indicators

The ecological indicators of soil ecosystem status included 
nematode-based indices (NBIs) measuring soil ecosystem 
health (Maturity Index) (Bongers 1990), food web status 
(Enrichment, Structure, Channel, and Basal indices) (Ferris 
et al. 2001), and ecosystem functioning (Metabolic Foot-
prints, namely the Composite, Enrichment, Structure, Her-
bivore, Bacterivore, Fungivore, Predator, and Omnivore 
footprints). The metabolic footprints reflect the magnitude 
of ecosystem functions performed by key constituents of the 
soil ecosystem (Ferris 2010).

Nematodes were extracted from a 200 g aliquot using the 
decanting-and-sieving method followed by sugar flotation 
method (Marais et al. 2017). The total number of nematodes 
per sample was counted using a De Grisse counting dish 
after which extracted nematodes were fixed in 4% formal-
dehyde and mounted on mass slides (Van Bezooijen 2006). 
For each slide, the first 100 nematodes were identified to 
genus or family level using a Nikon Eclipse 50i light micro-
scope with 40-1000x magnification. The identified nema-
tode counts per taxon were extrapolated to represent the 
total community of nematodes in the sample. Nematode-
based indices were based on community data and calculated 
using the NINJA online tool (Sieriebriennikov et al. 2014).

Additional ecological indicators included organic mat-
ter content, permanganate-oxidizable carbon (POXC), and 
soil respiration. Organic matter was quantified as a measure 
of the accumulation of biotic-derived substances using the 
loss-on-ignition method (Donkin 1991). In turn, POXC 
represented a more processed pool of carbon, which has 
been shown to reflect early indicators of carbon stabilisa-
tion (Hurisso et al. 2016; Sprunger et al. 2020; Woodings 
and Margenot 2023) and was assessed following Moebius-
Clune et al. (2016a, b). Finally, soil respiration, a measure 
to gauge microbial activity, was analysed using a MiniCube 
CO2 meter (Haney et al. 2018).

Conv system is associated with conventional tillage, where 
the soil is intensively tilled for weed management and seed 
bed preparation. These fields were first ripped to a depth of 
300 mm, then disced prior to planting. Soybean synthetic 
fertilisation consisted of 15 Kg ha− 1 P and 20 Kg ha− 1 K 
and maize fertilisation of 110 Kg ha− 1 N, 30 Kg ha− 1 P, and 
30 Kg ha− 1 K, also typical application rates for the region. 
The maize and soybean residues were selectively grazed 
by cattle. Finally, the pasture system was ultra-high density 
grazed by cattle once per year during the summer growing 
season. While the ultra-high density grazing stocking rate 
was 1 animal per 1 ha, the general stocking rate for selective 
grazing in the region is 1 animal per 4 ha.

2.4  Sampling Design

Conforming with industry standards, soil samples were 
collected before planting and during the growing season. 
Pre-planting sampling is routinely used for assessing soil 
fertility and informing fertilisation strategies (Olfs et al. 
2005). Additionally, sampling during the growing season is 
important as it reflects the dynamic effects of crop activ-
ity on soil health (Martin and Sprunger 2022). Therefore, 
the first sampling interval took place in September 2019, 
prior to the start of the 2019/20 summer growing season, 
while the second sampling interval occurred in February 
2020, during the growing season and after fertilisation. Dur-
ing this time, maize was in the R3/R4 stage and sunflower 
near physiological maturity. Cover crops were in the pre-
flowering stage.

In each system, six plots measuring 50 × 50  m were 
arranged within a 100 × 150-meter grid, facilitating uniform 
comparisons across sites, systems, and time intervals. Each 
plot served as a replicate with a georeferenced point per plot 
selected following the unaligned grid sampling approach 
(Peters et al. 2007). Ten sub-samples were randomly col-
lected within a 5-meter radius of the georeferenced point 
using a soil auger. The top 20 cm of soil was sampled after 
the mulch layer (if present) was carefully removed. These 
sub-samples were mixed to form a composite sample. From 
this composite, two 500 g aliquots were prepared: one for 
ecological and the other for physico-chemical analysis. To 
protect the integrity of the samples, they were kept away 
from direct sunlight and transported to North-West Univer-
sity (NWU) in insulated containers. Samples were stored at 
10 °C and processed within 10 days of collection.

This sampling design was chosen to enable a thorough 
and accurate comparison within the constraints of real-
world agricultural conditions, as opposed to controlled sci-
entific trials. This approach allows for a detailed assessment 
of smaller, well-defined areas within larger fields, facilitat-
ing precise comparisons across different management and 
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of how the agricultural systems and sampling intervals 
affected soil ecosystems. The CAP was utilised to spatially 
organise the data, focusing on the “Agricultural System x 
Sampling Interval” factor for grouping. The biplots ordina-
tion of the CAP analyses helped to visualise the complex 
relationships within the data, simplifying interpretation by 
reducing dimensionality while preserving patterns associ-
ated with the interactions of interest. Furthermore, the cor-
relation between the CAP axes and each ecological indicator 
was examined to identify the primary indicators driving the 
variation in the dataset. Indicators with a Pearson correla-
tion coefficient greater than 0.6 or less than − 0.6, in rela-
tion to the CAP axes, were identified as primary indicators. 
Similarly, the measured physico-chemical properties were 
depicted as vectors overlaid on the ecological ordination 
to elucidate their associations with ecological variations. 
Physico-chemical properties with Pearson correlation coef-
ficients exceeding 0.6 or below − 0.6 were also designated 
as primary variables.

Subsequent analyses involved pairwise comparisons of 
each primary ecological indicator and physico-chemical 
property at a 5% significance level, again considering the 
interaction between “Agricultural Systems x Sampling 
Intervals”.

3  Results

3.1  Vrede

The PERMANOVA analysis revealed a significant interac-
tion (p = 0.0034) in the ecological indicators between the 
systems and intervals (Table 3). Furthermore, the primary 
ecological indicators responsible for the evidenced varia-
tion in the CAP analysis included organic matter (-0.91 r 
with CAP 1), soil respiration (-0.85 r with CAP 1), Maturity 
Index (-0.65 r with CAP 1), Composite Footprint (-0.73 r 
with CAP 2), Channel Index (0.72 r with CAP 2), and Bac-
terivore Footprint (-0.71 r with CAP 2) (Table A.1).

These ecological indicators promoted a partial grouping 
of samples according to the systems and intervals (Fig. 1). 
This was most evident for the pasture system, which gen-
erally presented the highest values, during both intervals, 
of organic matter (Fig. 2a), soil respiration (Fig. 2b), and 
the Maturity Index (Fig. 2c). The grouping of the Cons and 
Conv systems was somewhat less clear, except for an evident 
separation between sampling intervals mainly driven by the 
Channel Index and Composite and Bacterivore footprints. 
In the Cons 2, Cons 3, and Conv systems, the Channel Index 
was significantly higher during the second sampling interval 
(Fig. 2d). Conversely, the first sampling interval presented 
significantly higher Composite Footprint values in both the 

2.6  Physico-Chemical Properties

Physico-chemical properties measured in this study 
included particle size distribution (i.e., fractions of sand, 
silt, and clay), pH(H2O), electrical conductivity (EC), and 
macro [inorganic N, Mehlich III extractable phosphorus 
(P), potassium (K), calcium (Ca), magnesium (Mg), sodium 
(Na), and sulphur (S)] and micro [Mehlich III extractable, 
boron (B), copper (Cu), iron (Fe), manganese (Mn), molyb-
denum (Mo), nickel (Ni), and zinc (Zn)] nutrients. The par-
ticle size distribution was determined using Cornell’s soil 
texture method (Schindelbeck et al. 2016), while pH and 
EC were measured in a 1:2.5 water extract using a Hanna 
HI 9811-5 pH/EC meter (Non-affiliated_Soil_Analysis_
Work_Committee 1990). Inorganic N was determined as the 
sum of nitrate and ammonium, which were extracted using 
1 M potassium chloride (KCl) solution (Keeney and Nelson 
1983) and analysed using an Auto Analyzer Flow system. 
The Mehlich III test was performed by the Intertek Labo-
ratories (Elandsfontein, South Africa) using Inductively 
Coupled Plasma Optical Emission spectroscopy (ICP-OES) 
for nutrient quantification (Mehlich 1984).

2.7  Statistical Analysis

A multivariate approach was designed to evaluate the influ-
ences of agricultural systems over sampling intervals on 
selected indicators of soil ecosystem status, for two distinct 
management and environmental contexts: Vrede and Reitz. 
Five levels of agricultural systems (Cons 1, Cons 2, Cons 
3, Conv, and pasture) and two levels of sampling intervals 
(first and second) were considered as predictive variables. 
The ecological indicators were log-transformed [log(x + 1)] 
and normalised to attenuate the non-normality of distribu-
tion, as confirmed by the Shapiro-Wilk test at a 5% signifi-
cance level.

The statistical methods employed, including Permuta-
tional Multivariate Analyses of Variance (PERMANOVAs) 
and constrained Canonical Analyses of Principal Coordi-
nates (CAPs), were selected due to their robustness in han-
dling complex, multivariate ecological data. This approach 
facilitated the evaluation of multiple factors and their inter-
actions simultaneously, providing a comprehensive view 

Table 3  Permutational Multivariate Analysis of Variance (PER-
MANOVA) of the predictive variables (systems and intervals) and 
their interaction for selected indicators of soil ecosystem status 
recorded at Vrede

df SS MS Pseudo-F P(perm)
Systems 4 336,5 84,1 9,6 < 0,0001
Intervals 1 92,9 92,9 10,64 < 0,0001
Systems x Intervals 4 75,6 18,9 2,2 < 0,01
Res 50 439,1 8,8
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the Conv system during both intervals (Fig. A.1a). In turn, 
EC was significantly higher (except at Cons 1) during the 
second sampling interval (Fig. A.1b). Finally, Ni was sig-
nificantly higher during the first sampling interval in Cons 
2, and significantly higher when comparing this system to 
the remaining systems during both sampling intervals (Fig. 
A.1c).

Cons 2 and Conv systems (Fig. 2e). Similarly, significantly 
higher Bacterivore Footprint values were recorded during 
the first sampling interval at Cons 2 and Conv (Fig. 2f).

Correlating physico-chemical properties with the CAP 
axes revealed that Ni (-0.63 r with CAP 2), Inorganic N (0.6 
r with CAP 2), and EC (0.6 r with CAP 2) were the primary 
properties associated with the ecological variation (Table 
A.2). Inorganic N was associated with the crop production 
systems (Fig.  1) but was generally significantly higher at 

Fig. 2  Pairwise comparisons of the primary ecological properties 
recorded at Vrede, namely (a) organic matter, (b) soil respiration 
(CO2-C), (c) Maturity Index, (d) Channel Index, (e) Composite Foot-
print, and (f) Bacterivore Footprint. Comparisons were made between 
agricultural systems (conservation 1–3, conventional, and pasture) and 

sampling intervals (September 2019 = blue boxes; February 2020 = red 
boxes). Significant differences (p < 0.05) between systems are indi-
cated with uppercase letters, while significant differences (p < 0.05) 
between intervals are indicated with lowercase letters

 

Fig. 1  Ordination of Canonical 
Analysis of Principal Coordinates 
(CAP) showcasing the distribu-
tion of evaluated ecological 
indicators at Vrede. Vectors on 
the primary ordination represent 
ecological indicators that exhibit 
a Pearson correlation coefficient 
(r) with CAP axes 1 or 2 of ± 0.6 
or greater. Similarly, physico-
chemical properties correlating 
with the CAP axes are presented 
on an overlay graph. Abbre-
viations: Soil respiration (Soil 
Resp.) and organic matter (OM)
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Footprint (0.63 r with CAP1 and 0.61 r with CAP2) being 
the only NBI recorded as a primary indicator (Table B.1).

The CAP biplot revealed that the Cons 1 system clearly 
grouped (during both intervals) and presented the lowest 
values of the primary ecological indicators when compared 
to the remaining systems (Fig.  3). Pairwise comparisons 
confirmed that Cons 1 overall had the lowest values of 
organic matter (Fig. 4a), POXC (Fig. 4b), and soil respira-
tion (Fig. 4c). Conversely, Cons 3 exhibited the highest val-
ues for these ecological indicators, except for POXC, where 
the highest values were observed in the pasture system. 
There was minimal variation between the sampling inter-
vals with no recorded significant differences for organic 
matter, POXC, and soil respiration. However, the Herbivore 
Footprint did not conform to this trend with most of the sys-
tems presenting significant differences between sampling 
intervals (Fig. 4d).

3.2  Reitz

Similarly to Vrede, there was a significant interaction 
(p = 0.0001; Table 4) between the systems and intervals in 
the Reitz data. The primary ecological indicators responsible 
for the variation in the CAP analysis included organic mat-
ter content (0.90 r with CAP1), POCX (0.76 r with CAP1), 
and soil respiration (0.73 r with CAP1) with the Herbivore 

Table 4  Permutational Multivariate Analysis of Variance (PER-
MANOVA) of the predictive variables (systems and intervals) and 
their interaction for selected indicators of soil ecosystem status 
recorded at Reitz

df SS MS Pseudo-F P(perm)
Systems 4 317,8 79,4 8,5 < 0,0001
Intervals 1 44,1 44,1 4,7 < 0,0001
Systems x Intervals 4 113,6 28,4 3,1 < 0,0001
Res 50 468,6 9,4

Fig. 4  Pairwise comparisons of the primary ecological properties 
recorded at Reitz, namely (a) organic matter, (b) permanganate-oxi-
dizable carbon (POXC), (c) soil respiration (CO2-C), and (d) Herbi-
vore Footprint. Comparisons were made between agricultural systems 
(conservation 1–3, conventional, and pasture) and sampling intervals 

(September 2019 = blue boxes; February 2020 = red boxes). Significant 
differences (p < 0.05) between systems are indicated with uppercase 
letters, while significant differences (p < 0.05) between intervals are 
indicated with lowercase letters

 

Fig. 3  Ordination of Canonical 
Analysis of Principal Coordinates 
(CAP) showcasing the distribu-
tion of evaluated ecological 
indicators at Reitz. Vectors on 
the primary ordination represent 
ecological indicators that exhibit 
a Pearson correlation coefficient 
(r) with CAP axes 1 or 2 of ± 0.6 
or greater. Similarly, physico-
chemical properties correlating 
with the CAP axes are presented 
on an overlay graph. Abbre-
viations: Soil respiration (Soil 
Resp.), organic matter (OM), and 
permanganate-oxidizable carbon 
(POXC)
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Index values, noted during the second sampling interval, 
suggest fungal-dominated decomposition pathways, as indi-
cated by increased numbers of fungivore nematodes (Du 
Preez et al. 2022; Ferris et al. 2001). This explains, at least 
in part, the elevated Bacterivore Footprint observed during 
the first sampling interval, which corresponds with lower 
abundances of fungivore nematodes. At Vrede, the main 
factor driving ecological differentiation between systems 
appeared to be the management context.

In contrast, Reitz presented greater discrepancies between 
the Cons systems, with both good and poor performing soil 
ecosystems. This suggests that specific management prac-
tices or varying environmental context at field level may 
be responsible for these differences. From a management 
perspective, the primary distinction between Cons 3 and 
Cons 1 was the amount of fertiliser applied across cultiva-
tion periods during the production of soybean, wheat, and 
maize. However, since these differences were small and no 
major nutrient parameters (N, P, K) were identified as key 
drivers, it is unlikely that fertilisation explains the observed 
variation in ecosystem status. Notably, the higher Herbivore 
Footprint in the Conv system during the second sampling 
interval is likely due to the presence of maize, a viable 
host crop that promotes the proliferation of nematode pests 
(Maina et al. 2019). In contrast, the pasture system, a natu-
ral, biodiverse grassland, presented substantially lower Her-
bivore Footprints, likely due to its ability to regulate pests 
and diseases more effectively (Creamer et al. 2022; Mitchell 
et al. 2002; Paudel et al. 2021).

While management practices may have influenced cer-
tain ecological indicators at Reitz, these factors alone do 
not fully explain the observed variation in ecosystem sta-
tus. Environmental context, particularly physico-chemical 
soil properties, played an important role in determining the 
ecological status of the Reitz agricultural systems. Eco-
logical indicators including organic matter, POXC, and soil 
respiration were clearly influenced especially by soil tex-
ture, which has well-documented effects on soil biological, 
chemical, and physical properties (Fine et al. 2017). For 
example, it has long been established that percent clay is 
a major driver of soil organic matter content (Krause et al. 
2018). The adsorption of organic matter onto clay minerals 
contributes to the physical preservation of organic matter by 
minimising its exposure to decomposing microorganisms 
(Six et al. 2000). It is widely accepted that the retention of 
organic matter is positively correlated with the decreasing 
size of the soil fractions (Dungait et al. 2012; Soinne et al. 
2020). Thus, it is not surprising that fine textured soils con-
sistently have greater POXC values relative to medium and 
course textured soils (Fine et al. 2017; O’Neill et al. 2021). 
A study exploring soil health properties across the Midwest, 
USA found that texture class accounted for over 60% of the 

Several physico-chemical properties presented strong 
correlations with the ecological indicator data. This included 
sand (-0.77 r with CAP 1), clay (0.67 r with CAP 1), Ca 
(0.64 r with CAP 1), Cu (0.63 r with CAP 1), and silt (0.61 
r with CAP 1) (Table B.2). While sand was positively cor-
related to Cons 1, the remaining primary physico-chemical 
properties were positively correlated with the Cons 2, Cons 
3, Conv, and pasture systems (Fig. 3). The pairwise com-
parisons confirmed that sand (Fig B.1a) was significantly 
higher and silt (Fig B.1b) and clay (Fig B.1c) significantly 
lower at Cons 1 during both sampling intervals. Clay and 
silt were the highest at Cons 3 and Cons 2, respectively. 
Calcium was also significantly lower at Cons 1 during both 
sampling intervals (Fig B.1d), while Cu was significantly 
higher at the Cons 3 and Conv systems (Fig B.1e).

4  Discussion

The marked variability in ecological indicators between 
study sites, management systems, and across sampling inter-
vals highlights the potential complexity and heterogeneity 
of soil ecosystems in different agricultural settings (Trivedi 
et al. 2016; Wilhelm et al. 2023). At Vrede, the elevated soil 
ecosystem status of the pasture system likely stemmed from 
continuous organic cover and minimal disturbance, factors 
known to result in higher levels of organic matter and POXC 
content (Augarten et al. 2023; Du Preez et al. 2024). These 
conditions can promote soil ecosystem functioning as evi-
denced by substantially higher respiration rates, indicating 
greater microbial activity (Haney et al. 2018). Furthermore, 
the pasture system also presented greater Maturity Index 
values indicating the presence of more sensitive nematode 
indicator taxa and a healthier soil ecosystem (Bongers 1990; 
Du Preez et al. 2022). While the pasture system at Vrede 
demonstrated strong ecosystem health, the performance of 
the Cons systems also warrants attention.

The higher Maturity Index values in the Cons systems 
compared against the Conv system suggest the potential of 
conservation agriculture to bolster soil ecosystem health. 
Practices like no-tillage and the integration of cover crops 
are known to increase organic matter (Breil et al. 2023; 
Wulanningtyas et al. 2021) and promote soil biodiversity 
(Sapkota et al. 2012; Schmidt et al. 2018), thereby support-
ing the health and functioning of soil ecosystems. Finally, 
lower inorganic N levels in the Cons systems correspond 
with reduced fertilisation, which is promoted as a good 
agricultural practice in support of conservation agriculture 
outcomes (Kassam et al. 2014; Thierfelder et al. 2018). 
However, the reason for distinct differences observed in the 
Channel Index and Composite and Bacterivore footprints 
across different intervals remains unknown. Higher Channel 
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and livestock rotations (Mitchell et al. 2024). However, it 
is important to have a long-term view of at least 10 years 
and more, to be able to properly evaluate and adapt appro-
priate local conservation agriculture systems (Smith et al. 
2021). The inclusion of multi-specie cover crops in rota-
tion with cash crops will help to produce the below- and 
above-ground biomass (Pisarčik et al. 2024; Wong et al. 
2024). This is known to increase biodiversity and stimulate 
soil ecological functioning (Mitchell et al. 2024; Opoku et 
al. 2024). Livestock integration on the cover crops further 
increase the impact on soil fertility, soil organic carbon 
sequestration, financial and income stability, and increased 
profits (Strauss et al. 2021).

A promising complementary approach is the gradual inte-
gration of biological products, which have the potential to 
reduce synthetic fertiliser inputs (Bargaz et al. 2018; Shah et 
al. 2021). However, it is important to acknowledge that bio-
logical products cannot fully replace synthetic fertilizers at 
present (Bargaz et al. 2018; Shah et al. 2021) as their effec-
tiveness is largely dependent on site-specific factors, par-
ticularly soil organic matter levels and nutrient reserves. For 
example, in soils with low organic matter and limited nutri-
ent reserves, mineralisation processes may fail to release 
sufficient plant-available nutrients to meet the demands of 
high-nutrient-requiring crops such as maize (Whalen 2014). 
Furthermore, the adoption of biological products to restore 
soil ecosystem functions have shown sharp upsurges locally 
and globally, but with mixed levels of success (Garbowski 
et al. 2023; Tshuma et al. 2024). Smith et al. (2022) showed 
that the success of these strategies aiming to adopt and adapt 
new context specific practices and technologies depends on 
careful assessment, planning, design, implementation, and 
management. It is recommended that farmers should start 
on a small scale (around 10% of your land), adopting a con-
tinuous trial-and-error approach, which is informed by a 
rigorous monitoring and evaluation process (including rel-
evant indicators discussed in this article, comparing differ-
ent options and trade-offs) (Smith et al. 2022).

5  Conclusions

This study adds to the growing body of evidence highlight-
ing the importance of agricultural management and envi-
ronmental contexts in the successful implementation of 
conservation agriculture systems. However, our findings 
suggest that the environmental context, in this study mainly 
reflected as soil texture, may have a substantial impact on 
soil ecosystem status, potentially outweighing the effect of 
the management system itself. This underscores the neces-
sity of setting realistic expectations for the outcomes of 

variation and had a much larger effect on soil properties 
relative to agricultural management (Sprunger et al. 2021).

Differences in soil texture between Vrede and Reitz likely 
also influenced management effects on various soil proper-
ties. For example, pasture management at Vrede seemed to 
increase soil respiration compared to the other agricultural 
systems. In contrast, respiration values were similar across 
most of the treatments at Reitz. Lower soil respiration val-
ues at Reitz are likely the result of lower overall ecosys-
tem status, including lower organic matter and high sand 
content relative to the high clay content and greater organic 
matter values found at Vrede. This suggests that while con-
servation agriculture systems and pasture management can 
elevate certain soil health properties, underlying soil texture 
is likely the main driver of ecosystem status.

These findings emphasise that the variability in and status 
of soil properties must be assessed before specific manage-
ment practices for farmers are designed (Lal 2020; Strauss 
et al. 2021). This is to identify specific problems and solu-
tions related to soil ecosystem health and functioning at the 
start of a long-term soil health strategy. Local and global 
solutions should be considered to create a context-specific 
soil health strategy, but the implementation approach should 
be dynamic and aimed at the continuous adaptation of agri-
cultural systems under unique local contexts. In support 
of this approach, Smith et al. (2021) described results and 
experiences from various participatory, on-farm research 
initiatives that used farmers as key innovators, which led to 
an acceleration in the adoption and adaptation of new pro-
duction systems.

Smith et al. (2021) found that the impact of CA practices 
on soil health was influenced by the quality and duration 
that they were applied, which were in turn determined by 
the innovation capacity of the farmer (i.e. the ability of the 
farmer to test, reflect on and integrate these principles in 
an adaptive management approach). Secondly, the environ-
mental context of the farm also influenced the rate of soil 
health restoration. For example, in the western crop produc-
tion regions of South Africa, low soil organic carbon levels 
are to a large degree related to lower rainfall, high drought 
risk, and high evapotranspiration. These factors limit crop 
growth, thereby reducing carbon inputs from plant resi-
dues that are critical for soil organic carbon buildup. Fur-
thermore, the inherent low fertility of sandy soils in these 
regions, intensifies the situation hindering nutrient retention 
and cycling, while also making these soils more susceptible 
to wind erosion and subsurface compaction (Du Preez et 
al. 2011; Swanepoel and Tshuma 2017). Addressing these 
challenges requires adopting management practices such 
as deep ripping, mulch retention (Laker and Nortjé 2024), 
integrated soil fertility management using blends of biologi-
cal and chemical fertilisers, and incorporating cover crops 
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conservation and other agricultural systems based on the 
inherent potential of the local environment.

To promote soil ecosystem health and ultimately soil 
health, it is important to focus on agricultural systems that 
sequester and store carbon in farmland soils. Increased 
carbon promotes biological activity, improve water regula-
tion, and facilitate nutrient cycling, among other benefits. 
Our study also reaffirms the importance of considering the 
timing of soil sampling in any soil health monitoring pro-
gram, as temporal variations can substantially influence the 
observed ecological indicators.

In conclusion, for the successful implementation of con-
servation agriculture systems, a highly adaptive on-farm 
innovation approach should be followed considering unique 
farmer contexts. In this process, farmers play a central role, 
while they are joined and supported by other key stakehold-
ers, such as researchers, and informed by a well-designed 
monitoring and evaluation process.
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